Serenity Link Test

Date: 14 and 15 July 2025
Author: Naomi Gonzalez and Hayden Swanson

Background:

Last week we attempted running power-up configuration and controlling LEDs on ETL FE board
with Serenity and these tests were successful at controlling LEDs and showed that the master
IpGBT ready light turns on after writing the power-up configuration.

Due to previous tests supporting the idea that the downlink is correctly sending data (we can
control multiple GPIOs, LEDs, and when running power-up the master IpGBT ready light
turns on) and the fact that whenever we try to read data there is always a timeout error we
believe there is an issue on the uplink.

One of these possibilities is we are selecting the wrong link for the uplink (this is due to the fact
that the KCU firmware has one downlink and two uplinks, so maybe we are not reading the right
uplink on Serenity) This is what we are testing in this report

Another possibility is the correct link is being selected but the firmware is incorrectly decoding
FEC12 Ipgbt data words, theoretically you should still receive some data even though it would
be unreadable data.

The final possibility we can think of why the uplink is not working is that the MGT is just not
being able to lock correctly and no data is being received or unreadable data is being received
but we are not sure of what the expected behavior is when the MGT does not lock.

Tests:

All these tests perform the standard Tamalero initialization (IpGBT power-up configuration)
before the first read. Tamalero registers refer to setting registers that are set during MTD power
up configuration to the value they are set to by Tamalero instead.

Note: For more detail about

standard Tamalero initialization: ETL IpGBT Power-up

MTD/Tamaleo register differences: MTD vs ETL Power-up
MTD init: function

no MTD init, selecting links [0,1,2,3,4,5,6,7,8,9,10]

https://codimd.web.cern.ch/LrUEbbkQTaGMmkMzhkZu2g
https://etl-mtd-daq.docs.cern.ch/slides/powerup.pdf
https://gitlab.cern.ch/mtd-backend/daq/software/mtd-daq/-/blob/master/src/mtddaqsw/controllers/lpgbt_controller.py?ref_type=heads#L213

with MTD init, selecting links [0,1,2,3,4,5,6,7,8,9,10]

with MTD init, selecting links [0,1,2,3,4,5,6,7,8,9,10] + power cycle

no MTD init, selecting links [0,1,2,3,4,5,6,7,8,9,10] + power cycle

no MTD init, no tamalero registers, links 0 to 24

no MTD init, no tamalero registers, links O to 11

no MTD init, no tamalero registers, links 0 to 11 + power cycle

with MTD init, with tamalero registers, links 0 to 11

with MTD init, with tamalero registers, links 0 to 11 + power cycle

with MTD init, no tamalero registers, links 0 to 11

with MTD init, no tamalero registers, links 0 to 11 + power cycle

with MTD init, no tamalero registers, links 0 to 11, sleep of 0.3 after link switch

with MTD init, with tamalero registers, links 0 to 11. sleep of 0.1 after link switch

with MTD init, with tamalero registers, links 0 to 11. sleep of 0.1 after link switch + power
cycle

no MTD init, no tamalero registers, links 0 to 11. sleep of 0.1 after link switch

no MTD init, no tamalero registers, links 0 to 11. sleep of 0.1 after link switch + power cycle
with MTD init, no tamalero registers, links 0 to 11. sleep of 0.1 after link switch

with MTD init, no tamalero registers, links 0 to 11. sleep of 0.1 after link switch + power
cycle

no MTD init, with tamalero registers, links 0 to 11. sleep of 0.1 after link switch

no MTD init, with tamalero registers, links 0 to 11. sleep of 0.1 after link switch + power
cycle

Results:

When running the power up configuration the IpGBT master ready light turned on as expected
when sending power-up configuration through the downlink. However after writing the power-up
configuration on the correct downlink and then cycling through different links to attempt a read
still resulted in timeout errors (0 packets recieved). We could only read links 0-11, once we went
above 11 the error changed (we assume that this is due to the fact that each link is a tx+rx pair
and there is a maximum on 24 lines in one firefly aka maximum of 12 channels).

Next Steps:
Information we need help finding the answer to:

How does timeout error occur, (when NO data is being received, or NO correctly formatted
data)?

What is the data format that the Serenity expects? Assuming that the datapath packages
the data a specific way before sending it to the payload. And assuming that the payload just
passes through the data and Serenity just reads the payload, where can we find information
of the specific data format Serenity is expecting?
My thought process is maybe the data is not being decoded correctly due FEC12
instead of FEC5
Is there anyone we can talk to, to learn more information on setting up and using the emp
butler to help us with debugging other then the documentation online?

Is there any other debugging tools Serenity or emp framework engineers have already set
up other then the emp butler or is there an example of inserting an ILA in the emp
framework datapath or payload

| have experience inserting ILAs with firmware projects built using HOG but | am not
sure how to insert one that ipbb will build and how to see the ILA data from Serenity on
aPC

Things we will do in the meantime:

Review the firmware and see how the uplink data gets decoded in the upper level firmware
blocks (Naomi)

Review the software to understand timeout errors more (Hayden)
Review emp fw documentation on emp butler for debugging (Naomi)

Review the physical hardware wired connections we are using for the uplink (does it allow
all 12 optical links from the vtrx+?) (Hayden)

What we want to test next:
Use the emp butler to check link status and connection on serenity firefly

Can we see the physical raw uplink data bits (with emp butler or ILA) to confirm whether we
have garbage data (that is not packaged correctly) vs no data at all in the uplink?
If garbage data, IpGBT data might not be decoded or packaged correctly

If no data, possible mgt not locking?

